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This article examines a problem concerning the kinetics of growth of a poly- 
disperse ensemble of crystals in a cascade of vessels in the case where the 
supersaturatin of the crystallizing medium filling the vessels relaxes rapid- 
ly to steady-state values. An analysis is made of the reason for the estab- 
lishment of a crystal-size distribution law which is close to normal in such 
a system. 

The crystallization processes which are common in chemical engineering, metallurgy, and 
geology are characterized by different physical mechanisms of crystal formation and growth 
[i], these mechanisms leading to the establishment of a given distribution of the particles 
of the new phase with regard to size. One of the main factors which determines the disper- 
sity of the product is [2] the presence of different sources of particles in the crystalli- 
zing medium. These sources are present due to processes involving heterogeneous (secondary) 
nucleation, agglomeration, the entry of crystals into the system from outside, etc. 

Here, we will study specific laws governing the formation of the crystal-size de~Isity 
function during unsteady bulk crystallization from supersaturated solutions or supercooled 
melts with intensive mixing of the medium (to prevent the formation of temperature and con- 
centration gradients) , continuous arrival at the j-th vessel of a two-phase medium from the 
(j - l)-th component of a cascade of similar vessels, and continuous extraction of finished 
crystals from the j-th vessel. It is just such a scheme that is used to conduct most crys- 
tallization processes. The operation of all other sources is accounted for in the cm:re- 
sponding kinetic equation by a certain generalized term Qj(T, r). 

Since the number of growing crystalline inclusions present in the system is normally 
quite large and since their volumes are much smaller than the volume of the matrix phase, 
the kinetic equation [2-4] for the density function of the crystals with respect to size r 
in the j-th component of the cascade fj(~, r) and the corresponding initial and boundary 
conditions can be written in the form 

afj a i 
a-7 + ~ (IJ vj) + y ( f j -  f~_~) = Qj (% r), 

fy(-c, 0 ) = 0 ;  fy(O, r ) = O ;  fo(~:, r )=O;  ] =  1, 2, 3 . . . .  
( 1 )  

Such conditions of unambiguity are quite permissible in light of the inhomogeneity of the 
initial system of equations. The presence of the solid phase at the initial moment o~ time 
and the occurrence of all types of nucleation within the vessels of the cascade can a]wways 
be taken into account in the source terms in the right sides of the equations. Since all 
of the components of such a cascade are usually hydrodynamically similar to one another, 
the kinetic coefficient ~(r) in the expression for the linear rate of crystal growth vj(T, 
r) can be considered to be independent of the number j. Then, in accordance with [2, $], 
we take 

vi (~, r) ~- dr~g, - -  1~ (r) q~ [Sj (T)]. (2)  

Here, ~ is a known dimensionless function describing the relative supersaturation (su~er- 
cooling) of the medium. This function is connected with the density function through its 
initial moments, by means of the conservation equation. This makes system (1-2) essentially 
nonlinear. As was shown in [3-5], at j = 1 the problem in question can be reduced to a 
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unique integral equation that can be studied numerically [5] or (for sufficiently long 
times) analytically [3, 4]. However, this equation cannot be obtained in the more general 
case j > i. Our further study of the given problem will be conducted using the example of 
the crystallization of polydisperse systems from solutions. 

In a number of cases, the time of relaxation of supersaturation ~r to a steady value 
turns out to be much less than the corresponding relaxation time of the crystal-size den- 
sity function. This can occur, for example, when the chemical method of creating supersat- 
uration is employed. Here, as a result of the mixing of two or more substances accompanied 
by the dissolution of a third component in them, the solubility of the latter in the mixture 
is sharply reduced. The resulting high degree of supersaturation of the solution is quickly 
eliminated by the spontaneous, avalanche formation of nuclei. After a short period of time 
~r elapses from the beginning of nucleation, the delivery of feed-solution establishes a 
more or less stable value of supersaturation at which subsequent crystal growth occurs. 
The theory developed below can be applied with almost no changes to certain cases of crys- 
tallization from melts - mainly for systems which tend to remain in a supercooled metastable 
state for a long period of time. If the conditions for the stability of the steady-state 
crystallization regime are satisfied in each cell of the cascade [4], then system of kinetic 
equations (1)-(2) can be solved analytically for moments of time �9 > ~r" To do this, we 
change over to dimensionless variables: 

t = , 1 0 ;  x = rir,~; Uj (t, x) = fj (tO, xrm) rmV, 

Rj  (t, x) = Qj (tO, xr,~) r.~ OV; g (x) = [3 (xr~) e/rm, (3 )  

q j = q ~ ( S j ) ,  ] = 1 ,  2, 3 . . . .  , 

then proceeding to a modified crystal size and to density and source functions established 
by means of the formulas: 

x 

!f = 'g (x) = .[ d u g  (~); Vj (t, V) = g (x) exp (t) Uj (t, x); 
o (4) 

Pj (t, V) = g (x) exp (t) Rj (t, x). 

Then the initial problem (1)-(2) takes the following form in the new variables (4) 

O V j + q j  OVj V ~ _ ~ = P j ( t ,  g), ] = l ,  2, 3 . . . .  ; 
Ot OV 

Vo(t, v)=o; V~(O, v)=o; Vs(t, o)=o. 
(5) 

Having made use of a two-dimensional Laplace transform [6] for the variables t and y, we 
write problem (5) in the form of an equivalent system of algebraic equations for the trans- 
forms of the sought functions: 

s~j(s,  p ) +  q jp~ j ( s ,  p) - -  ~_~  (s, p ) = ~ j I s ,  p), ] =  1, 2, 3 . . . .  

Having solved the resulting system by the method of mathematical induction, we find the fol- 
lowing expression: 

~S(s, p ) =  "~ / , ] =  1, 2, 3 . . . .  ( 6 )  
k=I II (s + pqj) 

Decomposing each term in the sum (6) into two factors and transforming them in succession, 
we can use the residue theorem [7] to obtain the final solution of system (5) in the form 
of the sum of j convolutions of the inverse images of these factors: 

J 1 i q { - h - ,  v t 

h=m i =  I1 ( q i - - q z )  o o 
l = k  
l<i  
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fl t--~] Y - - ~  d~, / = t ,  2, 3 . . . .  (7 )  
qi / qi 

Taking the Heaviside function from under the sign of the internal integral and returning to 
the initial variables (3), we can use Eqs. (4) to obtain the final expressions for the di- 
mensionless density functions of crystal size in the form of the following integral rela- 
tions 

, 1 j [  u,(t, x)=-2-1 4; t w H 
g(x) k=x~t s  ~ f i (qz__qz)  o 

I=A 

t - -  W(x)--',F(k) 
qf 

- (*) - ] I 
q~ J 

+ w (x) - �9 

Rk (% $~) exp (~1 - -  %) [(t - -  ~1) q~ * 

j - - - - l ,  2, 3 . . . .  

(8) 

The convergence of the last term (with k = j) in the sums (7)-(8) is not obvious, since the 
improper integral in it diverges. However, if the function Rk(q, k) satisfies Holder's in- 
equality with regard to q in the neighborhood of the point q = t - [P(x) - ~(l)]/qk -- which 
it almost always does - then it can be shown that at k + j this term has a finite limit 
equal to 

[ I [ ][ i _ 1 f / - /  t - -  ~ ( x ) - ~ ( ~ )  exp ~ ( ) " ) -~F(x )  Rk t ~ (x) - -  ~ (),.) ~ d)~, ( 9 )  
g (x) ~ qk qk q~ ' j 

In  p a r t i c u l a r ,  a t  j = k ; 1 i t  c o i n c i d e s  w i t h  t h e  s o l u t i o n  o b t a i n e d  in  [5] f o r  t h e  c a s e  q = 
c o n s t .  

Us ing  Eqs.  ( 8 ) ,  i t  i s  n o t  h a r d  t o  c a l c u l a t e  a l l  o r d e r s  o f  t h e  i n i t i a l  and c e n t r a l  mo- 
ments  o f  t h e  c r y s t a l - s i z e  d e n s i t y  f u n c t i o n  in  t h e  j - t h  v e s s e l  o f  t h e  c a s c a d e .  The f o r m e r  
determine the main parameters of production crystals: mean size, specific surface, mass 
concentration of the solid phase. The latter make it possible to calculate such probabilis- 
tic characteristics of the particle distribution as the variance, coefficient of variation 
(the ratio of the variance to the mean size of the inclusions, characterizing the narcowness 
of the fraction), etc. Since the function ~(x) may be fairly complex, numerical methods of 
integration are usually used to calculate these quantities. These methods make it possible 
to find zeroth-order moments determining the numerical concentration of crystals in the ves- 
sels. The moments are found in the form of the following analytic expressions: 

i U j ( t , x ) d x  = ~ 1 ~ d x (  R~(~l, x)exp(~l--t)( t--~)i-~d% j =  1, 2, 3, ..~ ~oj ( t )= (lO) 

In particular, these relations reflect the obvious fact that the concentration of crystals 
at any moment of time is independent of the rate of their growth at previous moments and is 
instead completely determined by the rate of their formation in the system at these moments~ 
i.e., by the rate of nucleation or the law governing the admission of seed particles co the 
vessels. It is not hard to show that Eqs. (i0) satisfy the well-known [2] system of balance 
equations for the number of particles along with zero initial conditions. This systela, ap- 
pearing as follows, is obtained by integrating the initial system of kinetic equations (i) 
over r within the limits 0, 

d~~ i dt + V ~ 1 7 6  R j(% x) dx, ]=  1, 2, 3 . . . .  
0 

The resulting solution (8) of the problem, with crystal-source functions Qj(~, rl I of 
arbitrary form, does not have a sufficiently clear physical meaning. To simplify int(.rpre- 
tation of the results, we will examine two special cases of this general problem which re- 
tain the essential features of the process and make it possible to discern the basic laws 
governing the kinetics of crystallization in a cascade of series-connected vessels. 

We will assume that the only source of inclusions growing during crystallization is 
homogeneous nucleation. Meanwhile, without loss of generality, we will assume that the for- 
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mation of nuclei occurs only in the first cell of the cascade. In this case, the number of 
terms in sums (6)-(8) is reduced to one. We take into consideration the assumptions made 
above regarding the character of the change in supersaturation, which decreases by several 
orders of magnitude over a short time ~r. Then, under the condition that the nucleation 
process can be classed as a "rapid type of nucleation" [8], the actual distribution of the 
nuclei with regard to size will quickly become the equilibrium distribution, corresponding 
to the instantaneous values of supersaturation. Under theseconditions, the concentration 
of critical nucleithat corresponds to each moment of time to the equilibrium concentration 
will almost instantaneously drop to a negligibly low value. As a result, the source term 
in the first kinetic equation of system (I) can be modeled by a 6-function: 

QI(~, r ) = 6 ( %  r--r*)N; Q](T, r )=O,  ] = 2 ,  3 . . . .  ; 
(ii) 

RI(t, x)=6(t, x--x*)NV; R~(t, x)=O. 

After these expressions are inserted into solution (8), we arrive at the following result: 

VNexp(--t) ~] 
uj (t, x) : g (x) r (1 - 1 )  ~=1 

.It lq, 
II (qi - -  qz) 
l = 1  

[tq, -- v~ (x)]i-2. ( 12 ) 

Despite the discontinuous character of each term individually, this function as a whole has 
a continuous graph. The graph is shown in Fig. la as a series of curves at different moments 
of time for a crystal growth rate which is independent of crystal size (6(r) = 60 = const). 
The increasing broadening of the graph of the function 6(x - x*)NV over time, resembling 
diffusional broadening, is caused by the fact that the inclusions of the new phase in pro- 
cesses of this type are distributed according to not just size but other parameters as well - 
particularly the residence time in the vessels [9]. Since they are located for different 
lengths of time under different conditions characterized by different degrees of supersatur- 
ation, crystals nucleated at the same moment of time T = 0 reach different dimensions by the 
moment they arrive at the j-th vessel (the greatest dimensions obviously will not exceed 
q't, where q* = maxqi). This fact is also reflected in the density function (12). In this 

l 

case, Uj(t, x) can be interpreted as a joint distribution describing the residence time of 
crystal~ in the first j vessels of the cascade and the dimensions of the crystals. There 
is no condition for normalizing this distribution to unity. 

As our second example, we will examine another extreme case. We will assume that all 
types of nucleation are absent from all of the vessels and that crystals of the same size 
are fed into the cascade at a constant rate. To make this case comparable to the first ex- 
ample, we take the rate to be equal to r*. Such a situation corresponds to the following 
source functions: 

Q1(% r)=6(r--r*)N/O; 0~(% r) 

Rl(t, x)=6(x--x*)NV; R j([, x) 
and Eqs.  (8 )  a r e  r e d u c e d  t o  t h e  f o l l o w i n g  form a f t e r  
mulas  by u s i n g  t h e  r u l e s  o f  i n t e g r a t i o n  by p a r t s  j - 

Uj(t, x ) :  VN ~ qi-2exp(--OH[t 
g (,--7 7 

i=1 II (qi - -  q 3  
/ = 1  

J "-b exp t 
q~ qi 

= 0 ,  ] = 2 ,  3 . . . .  ; 

(13) 

= 0 ,  ]=2, 3 ..... 
calculation of the corresopnding for- 
2 times 

(14) 

] = 2 , 3  . . . .  

It should be noted that when j = i, limit expression (9) should be used in place of Eq. 
to calculate the density function. 

( 8 )  

With the source term (13), expression (9) takes the form 

g (x) ql q~ ql J 
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Fig. i. Evolution of the crystal-size density function at 
the outlet of a five-vessel cascade with pulsed nucleation 
(a) in the first vessel and with a continuous input (b) of 
seed particles (80 = 5.0; N = 1.0.i0~; ql = 0.I, q2 = 0.08, 
qa = 0.06, q~ = 0.04; qs = 0.02); i) t = 0.8; 2) 1.0; 3) 
1.2; 4) 1.4; 5) 1.6; 6) 1.8; 7) 2.0; 8) 2.2. 

The family of curves in Fig. Ib reflects the evolution of the graph of function (14) oTer 
time. 

Comparison of Fig. la and ib shows that the two radically different structures of the 
source function (ii) and (13) correspond to similar symmetric spectral functions resembling 
a normal distribution of a random variable. The same character of distribution evideni:ly 
also exists for intermediate (in fact, "for all other) source functions. Indirect proof of 
this can be found in the monograph [i0], for example~ 

Let us estimate the time of relaxation of the function Uj(t, x) to a stationary c::ystal- 
size distribution in each of the cases examined above. To obtain the condition of stanion- 
ariness, we assume that 

rain [lqi -- ~F (x)] > 0, ( 15 ) 
qi 

Then the Heaviside function in all of the terms in Eqs. (12) and (14) can be dropped and, 
having used the binomial theorem, we can represent (!2) as the sum of the terms which con- 
tain as factors values of the Lagrangian polynomials for the functions (i/q) n at n = i~ 2, 
3, ... at the point i/q = 0, where q is a continuous argument and qi are the nodal points 
at which these functions are determined. Since the functions themselves are equal to zero 
at i/q = 0, then their Lagrangian polynomial also vanish at this point. Thus, Eq. (12~ 
vanishes for all x < x0, while it can readily be shown that (14) takes the form 

N ~ s-1 exp [Vl(x)/qJ 
U ~ ( x ) -  g(x) q~ s , ] = 2 ,  3 . . . . .  

i=l 11 (q~ -- q~) 
l--'-I 

where we f i n d  x0 from c o n d i t i o n  (15) in  t he  f o l l o w i n g  manner: 

(16) 

xo = max {rain [ ~ i -  ~ (~ ]  > 0}. (17) 
x qi 

The graph o f  Eq. (16) i s  shown by the  dashed l i n e  in  Fig .  1. 

Thus, the time over which a stationary cyrstal-size distribution (16) is established 
in the j-th vessel of the cascade is finite. This time is determined from condition (17) 
for each dimension x. If a disturbance of a stepped or pulsed nature arises at the inlet 
of the cascade in the steady-state regime, condition (17) allows us to evaluate the time in- 
terval necessary to establish a new steady state or to return to the initial state. 
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The use of more general expressions (8) and (i0), corresponding to actual situations, 
only complicates the mathematical aspects of the problem without essentially altering the 
final result. If the necessary information on the rates of crystal growth (2) and forma- 
tion Qj(~, r) is available, then by assigning different values for the supersaturation of 
the medium in the vessels we can calculate the corresponding crystal-size distributions at 
the outlet of the cascade along the crystals' numerical concentration, mean size, specific 
surface, etc. The mechanisms discovered in the present study make it possible to control 
the dispersity of production crystals and thus optimize the crystallization of polydisperse 
systems. For example, the methods of variational calculus can be used to minimize the width 
of the crystal-size distribution by establishing a suitable level of supersaturation in the 
vessels. 

NOTATION 

fj(~, r), density function of crystal size r in the vessel with the number j; vj(~, r), 
linear rate of crystal growth; 8(r), crystal growth rate coefficient; Sj(~), relative super- 
saturation or supercooling of the medium in j-th vessel; 8, average residence time of two- 
phase element of the medium in the vessel; rm, characteristic scale of crystal size; V, volume 
of one cell (vessel) of the cascade;' s, p, parameters of the Laplace transform; 6, I, N, in- 
ternal variables of integration; F, Euler gamma function; H, Heaviside function; 6, Dirac 
delta function; r*, size of critical nucleus; N, initial numerical concentration of nuclei 
in the first volume or initial numerical concentration of crystals in forms of the corre- 
sponding functions. 
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